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 As traffic congestion increases day by day, it becomes necessary to improve the 
existing roadway facilities to maintain satisfactory operational and safety 
performances. New vehicle technologies, such as Connected and Autonomous 
Vehicles (CAV) have a potential to significantly improve transportation systems. 
Using the advantages of CAVs, this study developed signalized intersection 
control strategy algorithm that optimize the operations of CAVs and allow signal 
priority for connected platoons. The algorithm was tested in VISSIM 
microsimulation using a real-world urban corridor. The tested scenarios include a 
2040 Do-Nothing scenario, and CAV alternatives with 25%, 50%, 75% and 100% 
CAV penetration rate. The results show a significant reduction in intersection 
delays (26% - 38%) and travel times (6% - 20%), depending on the penetration 
rate, as well as significant improvements on the network-wide level. CAV 
penetration rates of 50% or more have a potential to significantly improve all 
operational measures of effectiveness. 
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1. INTRODUCTION 

 
Due to increased travel demand, traffic congestion has 
become a serious problem around the world. 
According to INRIX, in 2016 the USA lost $295 billion 
due to congestion [1]. Inrix also predicted that the 
cumulative cost from 2013 to 2030 will be $2.8 trillion). 
The improvement in existing vehicular and the 
introduction of new technologies has been rather 
significant in recent years. Even so, the current 
vehicular technology is only a fraction of what is being 
expected in the future [2]. It is expected that vehicles 
will be able to sense its environment and navigate the 
surroundings without any sort of human input. 
Furthermore, vehicles will be able to communicate with 
other vehicles, infrastructure, pedestrians or even with 
the cloud.  Over the coming decades, improved 
technology will have a significant impact on traffic 
operations, safety and mobility [3]. These vehicles are 
introduced as Connected and Autonomous Vehicles 
(CAV). The U.S. Department of Transportation's 
National Highway Traffic Safety Administration 
(NHTSA) defined autonomous vehicles as “those in 
which operation of the vehicle occurs without direct 
driver input to control the steering, acceleration, and 

braking and are designed so that the driver is not 
expected to constantly monitor the roadway while 
operating in self-driving mode” [4]. At present, vehicles 
are already being deployed with some autonomous 
functionality, but the behavior of a fully autonomous 
car is yet to be explored. It is obvious that different car 
manufacturer will apply different logic to model the 
behavior of autonomous vehicles. But it is safe to say 
that these vehicles would have shorter headways, 
faster perception-reaction time and more uniform 
speeds than the conventional vehicles [5]. Most likely, 
autonomous vehicles will also possess the quality of 
connected vehicles. Connected vehicles will be able to 
communicate with other vehicles (Vehicle to Vehicle - 
V2V) as well as infrastructures (Vehicle to 
Infrastructure - V2I), like signal controllers. With the 
advantage of communication, connected vehicles will 
have different behavior than conventional vehicles. For 
example, these vehicles will be able to form platoons 
of vehicles and optimize their speed profile and routing 
decisions [6]. Though it is known that these vehicles 
will act more cooperatively than conventional vehicles, 
there is little development in the improvement of 
driving behaviors or intersection control strategies to 
make them more cooperative.  
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Driver behavior models, such as the Intelligent Driver 
Model (IDM), were originally developed for the 
Adaptive Cruise Control (ACC) equipped vehicles. But 
IDM or modified versions of IDM are appropriate to 
model driver behavior of CAVs, because these models 
exclude the effect of human-reaction time [7]. In low 
CAV penetration rates, it will be difficult to maintain a 
platoon in the urban network due to different route 
choices and signalized intersections.  

One of the challenges of improving driving behaviors 
or control strategies is the lack of testing platforms. 
Microscopic simulation can model the driving behavior 
of individual vehicles and their interaction with other 
vehicles. Also, simulation software VISSIM provides 
the opportunity to develop and test different 
algorithms, so it is appropriate for developing and 
testing driving behavior models and control strategies 
for CAV. 

The study presented in this paper developed a 
signalized intersection control strategy algorithm and 
tested the performance of the Intelligent Driver Model, 
platooning, speed control, along with the signal control 
algorithm using VISSIM microsimulation. The signal 
control algorithm includes a platoon priority strategy, 
which works similarly to conventional signal priority by 
extending the green time for an approaching platoon 
under certain conditions. Although over time the 
penetration rate of CAVs will increase, initially they will 
operate in the mixed environment. CAV’s interaction 
with the conventional vehicles will be complex. 
Understanding this necessity, the study analyzed 
CAV’s impact on both connected and mixed 
environment, as well as their interaction with 
conventional vehicles. 

 

2. LITERATURE REVIEW 

 

Connected vehicles use wireless technology to 
establish a vehicle to vehicle (V2V) or vehicle to 
infrastructure (V2I) connection to share real-time 
information, which has the potential to increase traffic 
safety and mobility. Wireless technologies like 
Dedicated Short Range Communication (DSRC), Wi-
Fi, and Bluetooth can be used to create a connected 
environment. DSRC is mostly similar to Wi-Fi 
communications, but Wi-Fi is mainly for wireless local 
area network, whereas DSRC is highly secure and 
high-speed wireless communications. 75 MHz of 
bandwidth at 5.9 GHz was dedicated for DSRC 
whereas Wi-Fi mostly uses 2.4 GHz and 5.8 GHz radio 
bands. The 2.4 GHz can be disrupted due to the other 
devices in the same area [8]. Another advantage of 
DSRC is the low latency of 0.02 second which means 
it takes 0.02 second in opening or closing a 
connection. DSRC is reserved for safety purposes in 
the connected environment, while the wireless 
technologies for non-safety application are yet to be 
fixed [3].  

In the recent past, the U.S. DOT funded the 
deployment of CV prototypes in both test bed facilities 
and in the real world. According to the GSM 
Association, by 2020 nearly every new vehicle in the 
US will have a cellular-based telematics system. Very 
soon, a majority of the vehicles on U.S. roads will be 
equipped with CV technology [7]. Numerous current 
research efforts are dealing with different CV 
applications. 

The U.S. Department of Transportation's National 
Highway Traffic Safety Administration (NHTSA) 
defined autonomous vehicles as those vehicles which 
can operate by itself without any human input. At 
present, most of the new vehicles have some 
autonomous functionality. With the progression of time 
vehicles will have more functions closer to fully 
autonomous vehicles. These vehicles will be 
integrated into the roadway through six-levels of driver 
assistance technology in coming years. At level 0, the 
vehicle is totally human controlled, and at level 5 the 
vehicle will be fully automatic in all conditions [4]. 
Human-driven decision-making mechanisms are 
mostly obsolete for autonomous vehicles. Autonomous 
vehicles will have a lower Perception Reaction Time 
(PRT) than conventional vehicles and this low PRT 
leads to a different driving behavior than conventional 
vehicle’s behavior [5]. 

PTV has provided a guideline on driving behaviors of 
Connected and Autonomous Vehicles [6]. CAVs will 
improve on conventional vehicles by: 

 having smaller standstill distance 

 following other vehicles with smaller oscillation 

distance 

 accelerating faster and smoothly from standstill 

 keeping constant speed with no or smaller 

oscillation at free flow 

 forming platoons of vehicles 

 adjusting speed profile to reach a green light at 

signals 

 performing more co-operative lane changes, and 

smaller lateral distance to vehicles on adjacent 

lanes 

Stanek et al. [5] and Atkins, Ltd. [9] measured the 
impact of autonomous vehicles based upon the PTV 
guidelines. Both these studies used the Wiedemann 
model for a congested network, which is a 
psychophysical traffic flow model. To make it realistic 
for autonomous vehicles, they set the parameter 
values based on low PRT. For example, Stanek et al. 
[5] reduced the minimum headway and safety distance 
reduction factor by 25%. The results showed that in a 
congested network, if the CAV penetration rate is 10%, 
the average delay will be reduced by 15%, while for 
100% penetration rate, the average delay will be 
reduced by 33%. Atkins, Ltd. [9] measured the impact 
of AV on freeways.  
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For 25% AV penetration rate, the average delay 
increased by 0.9%, but for 100% penetration rate the 
average delay reduced by 33.8%. Treiber et al. [10] 
developed the IDM for Autonomous Adaptive Cruise 
Control (ACC) systems. Later, Kesting et al. [11] 
developed Enhanced Intelligent Driver Model which is 
also suitable for Cooperative ACC. Both these driver 
models exclude human reaction time. 

Milanés et al. [12] tested the IDM model in a field 
experiment under the free-flow conditions. Four 
production cars by Infiniti were equipped with Adaptive 
Cruise Control (ACC) controller, Cooperative ACC 
(CACC) controller, and original IDM model controller. 
This study found that although the IDM controller 
produced a smooth car-following model, it had a 
significant time gap in response to the speed change 
of the leader vehicle, ranging between 0.4 s and 0.7 s. 
Therefore, they introduced a gap error and its 
derivative as a factor in deciding vehicle speed. 

According to Fernades [13], grouping vehicles into 
platoons can effectively increase the roadway capacity 
and can be helpful in avoiding stop and go conditions 
in urban traffic. This study developed a method of 
keeping a lower headway in between platooned 
vehicles. Results from simulation experiments showed 
that this method reduced travel time when compared 
to a model with larger headways. Songchitruksa et al. 
[7] developed algorithms for platooning of CACC-
equipped vehicles with realistic lane changing behavior 
and realistic wireless reception. Results found that 
good wireless communication leads to more stable 
platoons, dedicated CACC lanes promote longer 
platoon formation, and higher market penetration of 
CACC results in a longer platoon. 

Connected vehicles will be able to communicate with 
signal controllers wirelessly. Therefore, it is possible to 
adjust speed profiles to reach the beginning of a green 
signal. Jin et al. [14] developed a platoon-based multi-
agent intersection management system for connected 
vehicles. In this study, vehicles are allowed to form a 
platoon through V2V and V2I communication. Vehicle 
agent in the platoon communicates with the signal 
controllers to make a reservation based upon their 
arrival time at the intersection so that the vehicles plan 
their trajectory to meet the requirements (reservation, 
safety gap). Simulation of Urban Mobility (SUMO) 
software was used to build the traffic network, 
generate scenarios and evaluate the effectiveness of 
the proposed method. Results showed that the 
developed intersection management system reduced 
the average travel time by 12% to 30% compared to 
the traditional traffic control system, and 4% to 8% 
compared to the non-platoon based system. Feng et 
al. [15] presented a real-time adaptive phase allocation 
algorithm using connected vehicle’s location and 
speed data. Phase sequence and duration are 
optimized through a bi-level optimization. The objective 
function was to minimize total delay and queue length.  

To estimate the location and speed of unequipped 
vehicles, road segment near the intersection was 
divided into three regions: the queuing region, slow-
down region, and free-flow region. Location and speed 
data of unequipped vehicles were determined through 
connected vehicle’s data. Real-world model in VISSIM 
was used to test the performance. The total delay was 
reduced significantly compared to fully actuated control 
for high penetration rates, and comparable to actuated 
control for low penetration rates. 

Islam and Hajbabaie [16] developed a distributed 
hierarchy-based coordinated network optimization of 
signal timing for a connected environment. The network 
signal timing optimization was reformulated from a 
centralized architecture to a decentralized approach and 
distributed mathematical programs were coordinated 
with each other to find the global optimality. Result 
showed that controlled queue length and maximized 
intersection throughput reduced travel times by 17% to 
48% compared to actuated coordinated signals. 

Until the conclusion of this study, research on impact 
assessment of CAVs within the simulation platform has 
been limited. Several studies tried to model AVs in 
VISSIM [5, 9]. Songchitruksa et al. [7] developed a 
simulation framework in VISSIM, but the developed 
model was tested for a freeway. The study presented in 
this paper developed a framework for the urban 
congested network. Also, potential impacts of CAVs on 
traffic operations are still not known. This study 
evaluated the developed framework to assess the 
impacts of CAVs. 

 

3. CAV SIGNAL PRIORITY ALGORITHM 

 

In near future, CAVs will bring transformative changes 
in the field of traffic operations, mobility, and safety [3]. 
Driving behavior of CAV will be more cooperative and 
will consider the overall benefits. Interaction with other 
vehicles will allow them to keep smaller headways with 
more uniform speed than the conventional vehicles [5]. 
These vehicles will also communicate with signal 
controllers, allowing for optimization of signal timing 
parameters. This section presents a methodology for 
platoon organization, speed control and signal 
optimization in the CAV environment. The 
methodology was implemented and tested in VISSIM 
microsimulation. 

 

3.1. Internal Model Development 
 

The internal driver model adapts the VISSIM’s car-
following (Wiedemann) model, lane change and 
vehicle speed parameters. The scope of the internal 
model is limited to autonomous vehicles. No V2V or 
V2I communication is possible through internal 
modeling. In this study, the lane changing behavior, 
lateral behavior, acceleration functions, and desired 
speeds are defined through the internal model.  
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3.2. External Model Development 
 

External model development was performed through 
VISSIM’s Application Programming Interface (API), 
Component Object Modeling (COM) interface and an 
external driver model Dynamic Linked Library 
(DriverModel.dll). DriverModel.dll is appropriate for 
modeling continuous adjustment and for semi-
automated or automated driving. COM interface is 
appropriate for modeling event-based processes and 
continuous adjustment. In this study, the driving 
behavior of CAV is modeled through DriverModel.dll, 
and the intersection control strategy algorithm is 
implemented through COM interface programming 
using Python 2.7. 
 
3.3. Car-Following Model 

 
The Wiedemann traffic flow model is a time-based, 
stochastic and microscopic car-following model, which 
is the default car-following model in VISSIM. It is a 
psychophysical model and appropriate for human-
driven vehicles. To model Adaptive Cruise Control 
(ACC), researchers used Intelligent Driver Model 
(IDM). For Cooperative ACC (CACC) Enhanced IDM 
was used in previous studies. Both models exclude 
human reaction time, and therefore they are 
appropriate for modeling autonomous vehicles. 
Milanés et al. [12] updated the IDM equation to 
exclude the unrealistic negative values. This study 
uses this updated model as follows:  

aIDM = a [1 − (
v

v0
)
δ

− {

S0 +max(0, vT +
v∆v

2√ab
)

s
}] 

Here,  

a  - maximum acceleration - Maximum 
acceleration according to VISSIM’s function 

b  - desired deceleration (9 ft/s2) 
v0  - desired speed in free-flow condition (posted 

speed limit) 
v  - current vehicle speed  
s  - bumper-to-bumper inter-vehicle clearance 
s0  - vehicle to vehicle clearance in stand-still 

conditions (If the preceding vehicle is CAV 
then 3.3 ft, otherwise 4.9 ft). 

T  - minimum steady state time gap - 1.1 s 
  If the driver decides to brake for a yellow or 

red light, the vehicle will be assigned a 
constant deceleration value bapplied:  

brequired  -  v2 / 2dx 
bapplied  -  minimum (brequired, bmax) 
Here,  
dx  -  distance to stop line 
brequired  -  required deceleration 
bmax  -  maximum deceleration according to 

VISSIM’s function. 
 

This driver model was coded into External Driver 
Model Dynamic Linked Library (DriverModel.dll) and 
called in each simulation time step (0.1 s). 
 
3.4. Lane Changing and Lateral Behavior 

 
Based on the guideline provided by PTV [6], and in the 
lack of other available data, Stanek et al. [5] assumed 
that the reduction of minimum headway and safety 
distance reduction factor would be 25%. Maximum 
deceleration for cooperative braking was increased 
from 9.84 ft/s2 to 13.12 ft/s2, and the cooperative lane 
change parameter was selected to facilitate the lane-
changing cooperatively. This study also used these 
parameter values. 
 
3.5. Formation of Vehicle Platoons 

 
It is expected that connected vehicles will form 
platoons of vehicles. According to Jin et al. [14], 
grouping vehicles into platoons will increase roadway 
capacity. For the purpose of this study, the authors 
developed a platoon-forming algorithm as shown in 
Figure 1.   

 

Figure 1: Platoon Formation Algorithm 
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When a vehicle is released into the network, it will 
search for its preceding vehicle in the same lane. If the 
preceding vehicle is a connected vehicle and within the 
communication range, the new vehicle will request to 
join the platoon of the preceding vehicle. If the platoon 
already reached its maximum platoon length, the new 
vehicle will take the role of leader, otherwise a 
follower. If the preceding vehicle is not a connected 
vehicle, the newer vehicle will be the leader vehicle. 
For this study, it is assumed that the V2V 
communication range is 300 ft and the maximum 
platoon length is five vehicles. 

 

3.6. Trajectory Planning 
 

Trajectory Planning is one of the integrated traffic 
signal control algorithms. Each CAV communicates 
with the signal controller to receive the information 
about the start time of the next green or red on its 
approaching signal phase. If the signal state is green, 
the signal controller will send information about the 
next red time. The vehicle will modify its desired speed 
so that it can pass the intersection before the start of 
the red signal. During a green signal, the desired 
speed of a CAV is derived from equations below. If the 
desired speed of a CAV is higher than the posted 
speed limit, the CAV will obey the posted speed limit. 
The CAV also maintains a safe distance with the 
adjacent vehicle. 

Speedrequired =
Distancetosignal

Timeuntilnextred
   

Speeddesired = min[max(Speed required, Original Desired 
Speed), posted speed limit] 

If the signal state is red, the signal controller will send 
the information about the start time of next green. The 
vehicle will change its desired speed so that it can 
reach the intersection at the beginning of the green 
signal without stopping. At a red signal, the desired 
speed will be derived from following rules: 

Speedrequired =
Distancetosignal

Timeuntilnextgreen
   

IF (Speedrequired < 0.9 * Posted speed limit): 
 Speeddesired = Original Desired Speed 

ELSE Speeddesired  = Speedrequired 

The IF condition prevents unrealistically low speeds by 
keeping the minimum speed of the vehicles at 90% of 
the posted speed limit. The flow chart of the algorithm 
is shown in Figure 2. 

 

Figure 2. Desired Speed Selection 
 
 

3.7. Green Extension Time 
 

Green Extension Time is the second integrated traffic 
signal control algorithm. In a mixed environment, it is 
relatively difficult to form a platoon and maintain it. A 
formed platoon can break due to different routes of 
vehicles or signal timing. This algorithm maintains a 
complete platoon by facilitating its movement through 
the signalized intersection. If the signal state is green 
and a platoon requests more time to pass the 
intersection, the signal controller will consider 
extending the green time. The maximum allowable 
green extension time in this study is 5 seconds, which 
is sufficient time for the entire platoon of maximum five 
vehicles to pass the stop bar based on the previously 
defined car following behavior. If the trajectory plan of 
the platoon leader suggests that the leader will reach 
the intersection after the regular green time, the signal 
controller will not allow green extension time. The flow 
chart of the algorithm is shown in Figure 3. 
 
4. STUDY NETWORK AND BASE MODEL 

DEVELOPMENT 

 
The algorithm was tested in microsimulation on a real-
world network. The test-bed network for this study is a 
section of Redwood Road in Taylorsville, Utah, 
spanning two miles between 3500 S and 4700 S, as 
shown in Figure 4. There are seven signalized 
intersections along this corridor. The base simulation 
model was created using a combination of VISUM 
(mesoscopic simulation with traffic assignment 
abilities) and VISSIM (microscopic simulation). The 
initial model of existing conditions was created in 
VISUM and calibrated for traffic volumes using the 
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VISUM’s built-in functions. The geometry of the model 
was created based on field conditions. Traffic volume 
and turning movement count (TMC) data were 
collected for the intersections of Redwood Road with 
3500 S and 4700 S, as the major intersections, using 
the Utah Department of Transportation (UDOT) Signal 
Performance Matrices (SPM) system. The data were 
collected for the PM peak period (4:00 PM -6:00 PM) 
for every 15 minutes with September 28, 2016 as the 
representative weekday. These turning movement 
count data were added to the VISUM model. Additional 
traffic volume data were obtained from UDOT’s AADT 
maps and an existing Synchro model of the corridor. 
An initial Origin-Destination (OD) matrix was prepared 
and loaded into the model. 

 

Figure 3. Green Extension Strategy 

 

 

Figure 4: Study Network 
 

 

The VISUM’s T-Flow Fuzzy function was used to 
correct and calibrate the OD matrix to match the 
existing traffic volumes. After the volume calibration in 
VISUM, the network with traffic volume inputs and 
routing decisions was exported to VISSIM for further 
model development. The model was upgraded based 
on the actual intersection geometries provided by the 
VISSIM background maps. The geometry was 
checked through Google Street View and field visits to 
ensure that the model represents actual conditions. All 
signalized intersections were modeled according to the 
existing signal timings downloaded from the UDOT’s 
MaxView software. Detector size and location were 
modeled according to the UDOT’s standards and 
recommendations. The signal timing data also 
included the signals along the corridors parallel to 
Redwood Road. In the models, these signals were 
created as “dummy signals”, since no volume data 
were available for those intersections. To maintain 
coordination and platooning, minimum phase recalls 
was coded for the “dummy signals” in VISSIM.  
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The base model was calibrated for 15-minute 
intersection turning counts for the intersections of 3500 
S and 4700 S, shown in Figure 5. The R2 value of 0.96 
shows a good match between the field and simulation 
data.  

 

Figure 5: Base Model Calibration 
 
 

5. 2040 MODELS AND ALTERNATIVE CAV 
SCENARIOS 
 

The algorithm testing was performed for the 2040 
target year. For this purpose, first a Do-Nothing model 
was developed, using a projected travel demand for 
2040 along this corridor. Traffic projections and volume 
balancing were used to create new demand for the 
VISSIM model. The network geometry did not change. 
The only parameters that changed were signal timing 
settings. Synchro was used to optimize signals for the 
new demand levels, and traffic control in VISSIM was 
updated based on this optimization. Four CAV 
alternative scenarios were modeled, with 25%, 50, 
75% and 100% CAV penetration rate. All CAV models 
were derived from the 2040 Do-Nothing model. The 
results from the five scenarios were used to assess the 
effectiveness of proposed algorithms. 
  
6. RESULTS AND DISCUSSION  

 
To evaluate the impacts of CAVs and the developed 
control programs, VISSIM was coded to record 
intersection performances, segment travel times, and 
overall network performances. Each scenario was run 
for five differentially seeded simulations (with the same 
sequence of random seeds among scenarios), where 
each simulation was two and a half hours long (30 
minutes of warm-up time and two hours of output 
recording). The average values of the five simulations 
run for each scenario were used in the analysis. Two-
tailed paired t-test with a 95% confidence level was 
used to assess the statistical significance in the results 
from various scenarios. 

6.1. Intersection Performance  
 
Vehicle delays were measured for each signalized 
intersection along the analyzed corridor. The total 
weighted intersection delays obtained through 
simulations are provided in Table 1. 

 

Table 1: Intersection Performance Comparison 
 

TOTAL INTERSECTION DELAY (hours) 

Signal 
Do-

Nothing 
(DN) 

25 % 
CAV 

50 % 
CAV 

75 % 
CAV 

100 % 
CAV 

3500 S 467.7 267.7 246.7 237.4 231.3 

3800 S 14.5 12.0 11.0 10.4 10.1 

4100 S 320.5 198.9 183.6 178.4 172.6 

4200 S 96.2 60.2 58.2 54.2 42.4 

4450 S 125.2 115.9 95.9 82.5 71.4 

4610 S 127.0 122.0 109.0 131.9 108.0 

4700 S 272.0 269.5 283.5 254.4 244.3 

Total 1423.1 1046.5 988.2 949.7* 880.8* 

Compared 
to DN 

NA -26% -31% -33% -38% 

* Value statistically significantly different from the corresponding Do-
Nothing value 

Intersection performance result suggests that the total 

intersection delay during the 2-hour PM peak period 

reduced for any level of CAV penetration. For 25%, 

50%, 75% and 100% CAVs, the total intersection 

delays along the tested corridor reduced by 26%, 31%, 

33% and 38%, respectively. Statistical tests show a 

statistically significant difference for CAV penetration 

rate of 75% or 100% compared to the Do-Nothing 

scenario.  

 

6.2. Segment Travel Times  
 

Travel times for vehicular traffic were measured for 
segments between each pair of signalized 
intersections. The average travel times obtained 
through simulations are given in Table 2 for different 
scenarios. 

The reduction in travel times is statistically significant 
for all CAV penetration rates in both directions, except 
for the 25% CAV in the northbound direction. The 
results also show a consistent reduction in travel times 
in both directions for the same CAV rate. The time 
reduction continuously increases from 6% for 25% 
CAVs, to 20% for 100% CAVs.  
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Table 2: Segment Travel Times Comparison 
 

AVERAGE TRAVEL TIME (seconds) 

Segment 
Do-Nothing 

(DN) 
25% 
CAV 

50% 
CAV 

75% 
CAV 

100% 
CAV 

North Bound 

4700 - 4610 70.9 57.2 53.2 47.6 44.8 

4610 - 4450 44.7 41.4 38.1 37.4 29.8 

4450 - 4200 57.1 56.7 53.7 52.7 50.1 

4200 - 4100 54.9 53.4 50.4 49.2 46.1 

4100 - 3800 48.4 47.6 46.6 45.8 43.8 

3800 - 3500 91.4 89.7 89.2 83.5 77.7 

Total 367.4 346.0 331.2* 316.1* 292.4* 

Compared to 
DN 

NA -6% -10% -14% -20% 

South Bound 

3500 - 3800 48.9 45.7 44.0 42.9 41.1 

3800 - 4100 119.6 109.7 106.4 103.2 101.4 

4100 - 4200 18.0 17.6 16.6 15.0 13.6 

4200 - 4450 51.5 47.6 42.8 41.4 39.8 

4450 - 4600 78.8 72.9 70.2 68.9 65.0 

4600 - 4700 59.0 56.0 52.3 49.4 43.8 

Total 375.8 349.5* 332.2* 320.7* 304.8* 

Compared to 
DN 

NA -7% -12% -15% -19% 

* Value statistically significantly different from the corresponding Do-
Nothing value 

 
6.3. Network Performance  

 
The effects of the analyzed scenarios were further 

assessed on the overall network using the most 

relevant parameters, such as the average speed, total 

travel time, average stopped delay and a total number 

of stops. A summary of network performance results is 

presented in Table 3. 

The overall network-wide performance was better for 
all CAV scenarios compared to Do-Nothing. For the 
25% CAV penetration rate, the average speed reduced 
by 1.5% compared to the Do-Nothing scenario. This is 
due to the speed control algorithm and more 
interactions with non-CAV vehicles. Also, the platoon 
formation is harder to achieve due to the lower CAV 
percentage. The average speed increased for 50% or 
above CAV penetration rates. For 100% CAV the 
average speed increased by 8.1%. 

Other parameters for network performance evaluation 
also suggest an improvement in traffic operations with 

the increase in CAV rates. The total number of stops is 
an important parameter as it can measure the 
performance of the trajectory planning algorithm. For 
25% CAV the number of stops increased, but with the 
increase in penetration rate, the number of stops 
decreased. For 100% CAVs the number of stops 
reduced by 36%. 

 

7. CONCLUSIONS 
 

In the future, with the introduction of new vehicular 
technologies, vehicles will be able to communicate 
with other vehicles and the traffic environment. Their 
behavior will have significant impacts on all aspects of 
traffic operations and safety. 

This paper describes the development and testing of a 
platoon signal priority algorithm that enables the 
connected vehicles to form platoons and facilitate their 
movement through signalized intersections.  The 
algorithm was tested in VISSIM microsimulation, on a 
real-world corridor along Redwood Road in 
Taylorsville, Utah. Four scenarios with 25%, 50, 75% 
and 100% CAV penetration rates were used in the 
analysis.  

Comparing the performance CAV scenarios to the 
2040 Do-Nothing scenario, the following conclusions 
were reached: 

 Total intersection delays and travel times 

decreased with an increase in CAV penetration 

rates. 

 For 50% or more CAV penetration rate, the 

average speed continued to increase with the 

increase in penetration rate. 

 If the CAV penetration rate was more than 50%, 

the number of vehicular stops decreased 

continuously, suggesting significant benefits of the 

integrated trajectory planning algorithm. 

 With 25% CAV rate, the number of vehicular stops 

increased, while the average speed decreased. 

This is due to the significant interaction between 

CAV and non-CAV vehicles. With lower 

penetration rates it is difficult to form platoons, 

therefore reducing the effectiveness of the green 

extension algorithm.  

 The total delay and total travel time of the overall 

network decreased with the increase in penetration 

rate of CAV. 

Future studies will keep on improving the algorithm, 
considering optimization for low CAV penetration rates, 
optimizations in lane changing behavior, as well as 
introducing a segment-based speed optimization that 
will apply to all vehicles (CAV and non-CAV) within 
each segment and direction.  
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Table 3: Network Performance Comparison 
 

 Do-
Nothing 

(DN) 
25% CAV 50% CAV 75% CAV 100% CAV 

Value Value 
Compared 

to DN 
Value 

Compared 
to DN 

Value 
Compared 

to DN 
Value 

Compared 
to DN 

Average Speed (mph) 13.6 13.4 -1.5% 14.3 4.9% 14.5 6.8% 14.7 8.1% 

Total Travel Time (hr) 3204.0 3052.8 -4.7% 2869.9 -10.4% 2859.0 -10.8% 2848.5 -11.1% 

Total Delay (hr) 2067.4 1977.9 -4.3% 1780.9 -13.9% 1756.1 -15.1% 1735.1 -16.1% 

Number of Stops 141289 159066 12.6% 121378 -14.1% 99486 -29.6% 90800 -35.7% 
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